Steel for plastic moulding

Plastics – an ever growing market	04
Deutsche Edelstahlwerke – the experts in steel for plastic moulding	06
Process reliabilty from consultation through to the final product	09
Precision for mould manufacturers	09
Profitability for the plastic-processing industry	10
Dependability for the plastic user	10
Our technology and experience – your guarantee for premium quality	11
Custom remelting	13
Individually variable heat treatment	13
Processes and steel for plastics processing	14
Overview of plastic mould steel	15
Injection moulding	16
High-performance steel for injection moulds	17
Compression moulding	18

CONTENTS

03

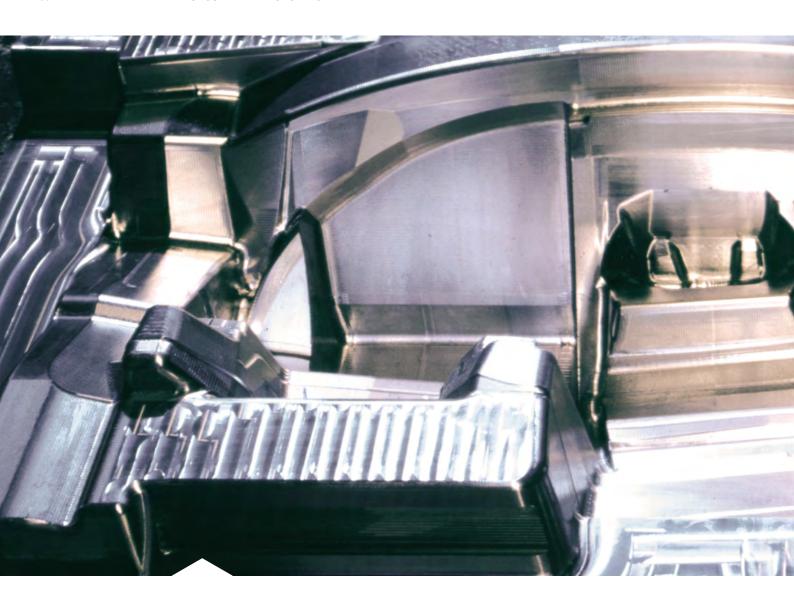
High-performance steel for compression moulds	19
Plastic extrusion	20
High-performance steel for plastic extruders	21
The blow-moulding process	21
High-performance steel for blow-moulding moulds	22
Plastic moulding for large moulds	24
High-performance steel for large moulds	25
Mould frames	26
High-performance steel for mould frames	26
Moulds for plastic-extrusion lines	28
High-performance steel grades for plastic extruders	29
Steel for plastic moulding and their properties	30
Material data sheets	32
Hardness comparison table	60

Plastics – an ever growing market

Although plastics have only been in existence for about 100 years, their contemporary uses reach into virtually every area of our lives.

Applications span from bulk commodities such as packaging and reusable bottles, to high-quality articles and accessories manufactured for the consumer goods, leisure, automotive and construction industries. High-tech applications have found their way into the aerospace industry too – life today has become unimaginable without plastics.

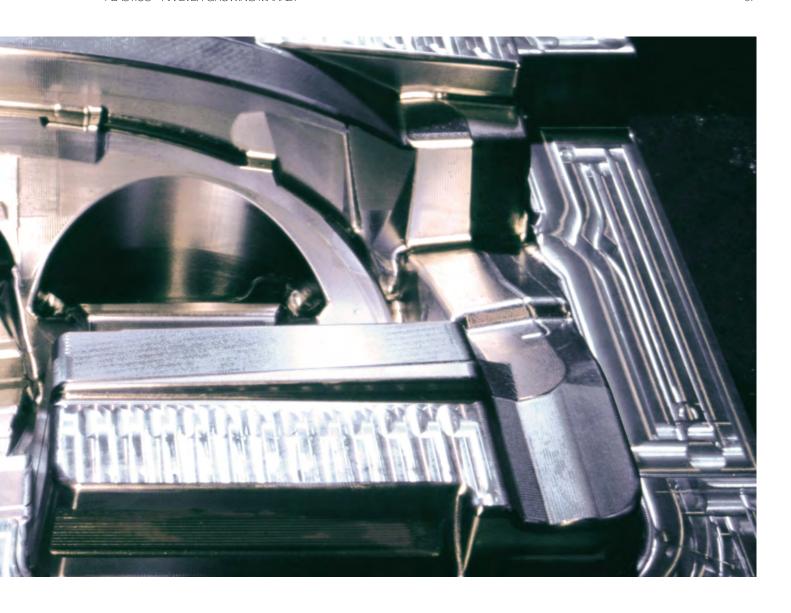
In 2003 global plastics production exceeded the 200 million-ton threshold. The steadily increasing use of plastics requires ever more efficient and reliable processing to trim production costs. This also applies to the optimization of tool steel.


When considering the entire plastic-manufacturing process chain, it becomes evident that mould design and engineering are of outstanding importance.

For this reason plastic mould steel is of key importance, as they serve as a basis for the ultimate quality of the ready-to-use plastic product.

Each plastic product has to fulfil completely individual requirements when it comes to quality, optical and tactile appearance, surface finish and strain limits. To ensure these demands are met, high-quality and special steel is essential for the construction of a mould.

The valency of a plastic surface – whether perfectly textured, photo-etched or immaculately mirror-finished – can only be as good as the finish of the mould the plastic product has been moulded with. The better a tool steel is matched to the demands of the plastic product, the better the final product quality.



Deutsche Edelstahlwerke – the experts in steel for plastic moulding

The Deutsche Edelstahlwerke steel for plastic moulding is characterized by two factors. On the one hand the use of the highest steel quality and on the other hand the steel's properties which in each individual case can be ideally adjusted to the most diverse requirements of different dies or to those of the plastic product itself.

The use of the most modern technology for Deutsche Edelstahlwerke's plastic mould steel meet the most rigorous demands regarding:

- » purity
- » polishability
- » consistent hardness and microstructure
- » wear resistance
- » temperature resistance
- » machinability
- » toughness and degree of hardness
- » thermal conductivity

So as to offer optimal conditions to mould manufacturers, the plastic-processing industry and other industrial users, Deutsche Edelstahlwerke extends their services into customer and application-specific consultation as well as advice on product development.

Deciding on the perfect tool steel at Deutsche Edelstahlwerke begins by consulting our plastic mould steel specialists. The demands on the final product are defined by the plastic mould strain and the demands on the required steel grade. Deutsche Edelstahlwerke delivers individual sizes ex-warehouse. Our clients are given the chance to be integrated in decision making from the extent to which pre-machining should take place, via the manufacture of components right through to the perfectly fitting moulded article. In addition to a broad spectrum of conventional steel, Deutsche Edelstahlwerke also supplies specialty materials such as Ferro-Titanit®.

Process reliability from consultation through to the final product

The moulds used for plastic processing are very diverse in their functionality and the demands made on them. The correct choice and treatment of the steel grade are decisively influential on the quality and resulting profitability of plastic production.

So as to ensure the client's demands are met, we rely on a highly experienced group of specialists in the steel-for-plastic-moulding area. Together with the mould manufacturers, they constitute a perfectly coordinated team to determine which steel grade and quality are most appropriate to the individual profile demands as characterized by the final plastic product.

To complement the know-how of our steel specialists, we are able to rely on the most modern production facilities backed up by decades of experience in every area dealing with heat treatment. Furthermore, our active and certified quality assurance system (DIN EN 14001, DIN EN ISO 9001, QS 9000, VDA 6.1 TS 16949 and KTA 1401) warrants the production of an individually defined steel grade with continuous quality consistence.

Precision for mould manufacturers

Our competence begins with advice on the choice of the most suitable steel and extends to the development of new specific tool-steel grades. Not only do you have the choice between the various forms delivered from our extensive stock and product range, but you also determine whether the mould is to be delivered in a pre-machined or ready-to-install state.

Deutsche Edelstahlwerke then reliably delivers the chosen steel grade fast and in any quantity desired – and always with consistent quality. This applies to all important markets worldwide via the distribution network of the Swiss Steel Group

We guarantee our clients customized precision from the steel production stage right through to machining – and this mould after mould.

Benefits for the mould manufacturers are:

- » high degree of purity
- » excellent polishability
- » exceptional texturing properties
- » consistent microstructure
- » optimal machinability
- » reproducible heat treatment
- » very short delivery times
- » competent advisors
- » development of new steel grades

.

Profitability for the plastic-processing industry

Long exposure times and high-quality continuity for every plastic product are generelly expected from the mould in plastic processing.

In order to achieve this, the dies have to be exceptionally finely tuned to the specific properties of the plastic used and to the demands of the final plastic product.

Many years of experience, coupled with innovative material technology in production together with treatment of long products – made of quality steel – have placed us in a position to deliver tailormade steel grades to satisfy mechanical, thermal and chemical demands of the plastic products.

Our technicians provide advice and support even when problems with the exposure time for the moulds occur. They are able to produce findings for rapid and long-term damage repair through assessment and material testing.

The ensuing benefits for the plastic mould manufacturer are:

- » excellent thermal conductivity
- » optimal wear resistance
- » unique compression strength,
- » hardness and toughness
- » corrosion resistance
- » low-maintenance costs
- » minimum mould maintenance
- » extraordinary dimensional stability
- » good repair weldability

Dependability for the plastic user

Because the quality of the steel used for plastic moulding is crucial for the processing quality of the final plastic product, it is highly recommended to consult with Deutsche Edelstahlwerke's specialists at an early stage – optimally at the planning stage. Our know-how and technical advice mean production security right from the start. The advantage of fine tuning at preliminary stages results in minimization of production costs.

Deutsche Edelstahlwerke supplies the chosen steel grade or the pre-machined moulds to mould manufacturers throughout the world. They then produce the mould. Our global supply network of the Swiss Steel Group concurrently guarantees dependable delivery and highest quality on site.

The resulting benefits for the plastic user are:

- » technical consultation
- » shorter delivery times
- » long-term know-how
- » plastic surfaces reproducable at any time
- » consistent quality

Our technology and experience – your guarantee for premium quality

The purity and homogeneity of our coldwork tool steel and high-speed steel stem from producing them in our modern steelworks at Witten and Siegen. We fulfil our clients' predefined demands by means of precision alloying and using process specifications for melting, shaping and heat treatment.

The tool steel produced by Deutsche Edelstahlwerke is melted in 130-ton electric arc furnaces. A subsequent analytical fine-tuning is carried out in a ladle furnace, followed by vacuum degassing of the steel just before casting.

In order to cast the metallurgically treated molten metal, two processes can be applied depending on the required size of the final product. Usually an optimized vertical continuous casting method is used, but for large forging sizes, ingot casting is employed.

Custom remelting

For tool steel grades having to satisfy especially high levels of toughness, homogeneity and purity standards, Deutsche Edelstahlwerke has several electroslag remelting furnaces (ESRs) as well vacuum-arc remelting furnaces (VAR) at its diposal.

The decision as to which process and furnace to use is predetermined by the desired quality the remelted steel should have. Electroslag remelting (ESR) produces noticeably refined sulfidic purity in comparison to non-remelted steel. To improve oxidic purity, vacuum-arc remelting (VAR) is applied.

Individually variable heat treatment

The integration of the previous Thyssen hardening shops into the Deutsche Edelstahlwerke group has enabled us to build on decades of tradition in all fields of heat treatment. From a practical point of view, we are now able to manufacture products using the complete production chain – starting with steel production, via presmachining to refining through to heat treatment. Our one-stop solution is invaluable for the world's most important markets and facilitates fulfilment of the most

discerning tool quality prerequisites. In our hardening shops of the Swiss Steel Group across the continents, we have vacuum-tempering furnaces, inert gas plants and plasma-nitriding plants for thermochemical treatments at our disposal. Thanks to computer-controlled process flows, the reproducibility of heat treatment is guaranteed at any time – from the initial inspection of incoming shipments through to the final heattreated product.

A bonus for our clients

Through the use of a precision-hardening process – a Deutsche Edelstahlwerke development – we are in the position to reduce the deformation of thin components to a minimum (e.g. with guide strips).

Processes and steel for plastics processing

As the processing methods for plastics vary to a great extent, the demand profile of the steel moulds for plastic moulding may show very considerable differences. Consequently, different steel grades are inevitable to attain a perfect final plastic product.

Deutsche Edelstahlwerke supplies superlative tool steel for each type of application and every stage related to plastic processing.

The most important Deutsche Edelstahlwerke steel grades for moulds used in different processing methods are referred to in detail on the following pages.

Steel for plastic moulding is used for:

- » injection moulding
- » compression moulding
- » plastic extrusion
- » blow moulding
- » large moulds
- » mould frames
- » extruders

Overview of plastic mould steel

Steel for plastic moulding	Injection moulding	Com- pression	Extrusion	Blow moulding	Large moulds	Mould frames	Extruders
Formadur® 2083	•	•	•				
Formadur® 2083 Superclean	•	•	•				
Formadur® 2085	•	•				•	
Formadur® 2162	•	•					
Formadur® 2190 Superclean	•	•					
Formadur® 2311	•	•		•	•		
Formadur® 2312	•	•			•	•	
Formadur® 2316	•	•	•	•	•		•
Formadur® 2316 Superclean	•	•	•	•	•		•
Thermodur® 2343 EFS	•	•					•
Thermodur® 2343 EFS Superclean	•	•					•
Thermodur® 2344 EFS	•	•					•
Thermodur® 2344 EFS Superclean	•	•					•
Cryodur® 2357	•	•					
Formadur® 2361	•	•					•
Cryodur® 2363	•	•					
Cryodur® 2379	•	•					•
Cryodur® 2709	•	•					
Formadur® 2711	•	•			•		
Formadur® 2738	•	•		•	•		
Formadur® 2764	•	•					
Cryodur® 2767	•	•					
Cryodur® 2842	•	•					
Formadur® 2891							•
Cryodur® 2990	•	•					•
Rapidur® 3343	•	•					
Formadur® PH X Superclean	•	•	•	•			•
Formadur® PH 42 Superclean	•	•	•	•			
Formadur® 320	•	•		•	•	•	
Corroplast [®]	•	•		•		•	

Injection moulding

Injection moulding is the most significant method employed to produce moulded parts for thermoplastics. It is also used for the processing of thermosetting plastics and elastomers. Injection moulding is ideal for the plastics manufacturer producing such products as cogwheels for watches, or bumpers and mudguards for automobiles.

During the moulding process the smelted plastic is injected into a die which then forms the mould cavity. Here the plastic develops the desired shape and cools. The finish of the final product is characterized by three factors: the type of plastic used, the processing parameters and the injection mould itself.

The basic tasks of an injection mould are to intake the melt, distribute and form it and to cool it rendering a solid state object. Finally the finished product is ejected. For this reason an appropriate steel grade is of paramount importance for the thermal design of a mould, since differences in the die's surface temperature or wall thickness bring about varying cooling conditions and thereby influence the properties of the moulded part.

NJECTION MOULDING 1

High-performance steel for injection moulds

Additionally to a broad range of globally established high-quality standard steel grades, Deutsche Edelstahlwerke provides further steel with specific qualities for injection moulds. Please see the product table below for property comparisons. We have highlighted the following steel grades as most representative of our complete range.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade exhibiting outstanding polishability. Typical operational applications of this very pure steel include spectacles lenses, headlight moulds for the automobile industry and components for the aeronautics and chemical industries.

Formadur® PH 42 Superclean is a precipitation-hardenable remelted steel for plastic moulding, exhibiting excellent polishability and weldability as well as outstanding toughness and texturing properties. This steel grade is ideal for extensively used injection moulds.

Corroplast® is a low-carbon stainless steel

which machines more easily than any other stainless steel for plastic moulding known to date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is suitable for mould frames and plastic moulds with standard demands on polishability and resistance to condensation and cooling water.

Cryodur® 2709 is characterized by the following properties – extreme toughness, polishability, good texturing properties and weldability. The martensitic hardenable coldwork steel is employed for moulds and mould cores with complex geometry used under extreme flexural stress.

Cryodur® 2357 is a steel with good toughness also at an elevated hardness. The chemical composition makes Cryodur® 2357 suitable for air hardening for tools with medium wall thicknesses, bigger cross sections must be quenched in oil. Good polishability in combination with high wear resistance and high compressive strength makes Cryodur® 2357 universally useable in mould manufacturing.

Compression moulding

For compression moulding, a compression moulding material, usually pre-heated and in the form of powder, grain or pellets, is poured into the mould. The moulding material is plastified using pressure and heat and formed in such a way that the plastic to be manufactured completely fills the mould cavity.

Decisive process parameters for a mould are pressure and temperature.

When manufacturing the mould plates and all shaping elements of the mould it is important that the temperature of the mould during working should not exceed the tempering temperature and thereby the retention of hardness of the steel. Wear resistance is a further but important criterium made on the tool steel, since the fillers contained in the compression-moulding material have the capacity to create extreme wear and tear. This is the case, for example, with fibreglass containing plastics.

COMPRESSION MOULDING 19

High-performance steel for compression moulds

When it comes to moulds, Deutsche Edelstahlwerke does not only supply an extensive range of high-quality quenched and tempered, annealed and solution-annealed steel grades, but other steel with special properties.

We have chosen two steel grades to represent a larger selection.

Formadur® 320 is a pre-hardened high-performance steel for the production of very large-sized moulds and dies. This steel grade is supplied at a hardness of 280 -325 HB and of 310 - 355 HB achieved by quenching and tempering. It exhibits very good texturing properties, machinability, weldability and nitridability. In comparison to steel grades used to date, Formadur® 320 features increased thermal conductivity as well as enhanced quenching and tempering properties. Due to its improved toughness and a hardness symmetrically distributed over the entire cross section, this high-tech steel grade is recommended for the construction of more complicated

moulds, such as those needed for bumpers, sinks and cladding for automobile and plane interiors.

Cryodur® 2990 is a newly developed, ledeburitic cold work tool steel with high hardness, good toughness and high tempering strength which simultaneously displays a high wear resistance. Its excellent compression strength, high abrasion and adhesion resistance create a property profile ideal for pressure pads and plastic moulds.

Plastic extrusion

Extrusion is a shaping process, the result of which are strand-like plastic semi-finished or continuous products. Product examples include plastic profiles or continuous-strand pipes. In this process, the plastified plastic to be processed is pressed by means of an extruder from a pressure chamber through a mould orifice. The profiles of the female mould have to be purpose shaped to enable the extrusion of complicated cross sections of the strand.

Decisive factors for the success of an extrusion process are shape retention and dimensional stability of the female mould, which ensure the manufacture of precise profiles and the ensuing products necessitating standardized high quality. Resistance to mechanical wear and corrosion are prerequisites the steel used to produce the mould also has to meet.

High-performance steel for plastic extruders

Besides its established high-quality standard steel (quenched and tempered or annealed), Deutsche Edelstahlwerke supplies steel grades with special qualities for extruders.

We would like to highlight the following steel grades from our complete product range. Please see the product table below for a comparison of properties.

Formadur® 2316 is a standard steel grade, which is supplied quenched and tempered at a working hardness of approximately 300 HB. Due to its increased chromium content, this grade is endowed with greater corrosion resistance. The steel shows an appropriate polishability, weldability and machinability. Formadur® 2316 is mainly used for moulds to process corrosive plastics as well as for mould inserts, slot dies, profile moulds and sizing dies.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade exhibiting outstanding polishability. A derivative of Formadur® 2316, this exceptionally pure premium steel grade features better wear resistance and high dimensional stability after machining. Formadur® PH X Superclean is, amongst other purposes, used for heavily strained female moulds and for continuous or hollow profiles such as window frames.

The blow-moulding process

Blow moulding is the usual production process for hollow plastic objects such as bottles, canisters and similar containers. This process is also used for the making of flat and tubular films. A blow mould is constructed from several parts.

In the production of hollow articles such as bottles, a preform is moulded by means of a blowing mandrel and compressed air. The manufacture of flat films using this method is carried out by means of slot dies. Tubular films are produced with blow heads.

Blow moulds are particularly subjected to increased wear and tear at the parting lines. These mechanically heavily stressed parts should, therefore, be replaceable and made from high tensile steel.

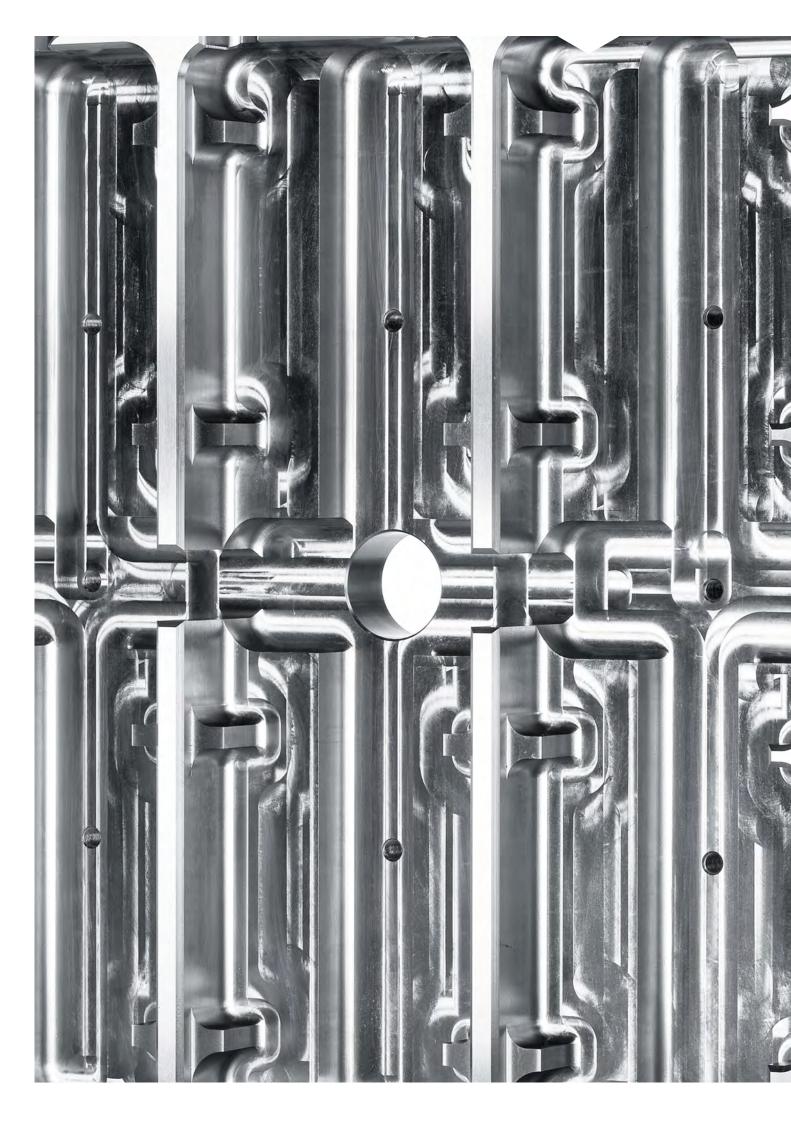
In PET processing for example, cooling is important for the quality and performance of a blow mould. For this reason steel grades with particularly good thermal conductivity should be taken into consideration when choosing materials.

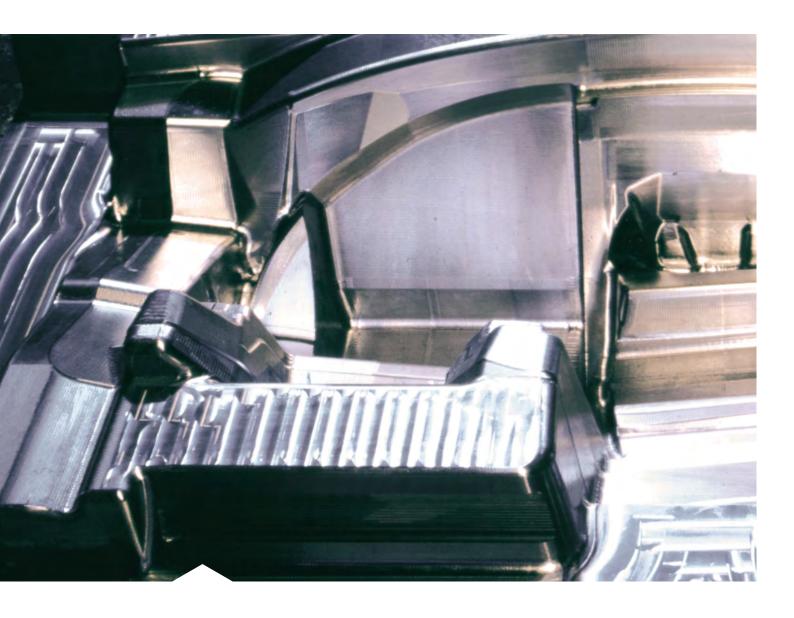
High-performance steel for blow-moulding moulds

For blow moulding Deutsche Edelstahlwerke supplies a broad assortment of high-quality quenched and tempered steel grades with highly minimized distortion.

Regardless whether intended for use as a slot mould, blow head or for a hollow article mould (for products such as bottles or canisters), every listed steel grade is perfectly designed for different blow moulds.

The blow mould product range consists of the following steel grades. Please refer to the product table for property comparisons.


Corroplast® is a low-carbon stainless tool steel which is more easily machined than any other stainless steel for plastic moulding known to-date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is suitable for mould frames and plastic moulds, meeting standard demands on polishability and resistance to condensation and cooling water.


Formadur® 2311 is a quenched and tempered standard steel grade, supplied at a hardness of 280 to 325 HB. It comes with a minimal sulphur content and is characterized by its good machinability, weldability and suitability for nitriding. It displays sufficiently high robustness for standard applications. Quenching and tempering is limited to a thickness of approximately 400 mm.

Formadur® 2738 is a quenched and tempered steel for plastic moulding and comes at a hardness of 280 to 325 HB. This steel grade is a derivative of Formadur® 2311 and is characterized by good machinability and polishability. In comparison to Formadur® 2311 it is quenched and tempered more easily when thicker than 400 mm.

Formadur® 2316 and Formadur® 2316
Superclean are standard steel grades and are supplied quenched and tempered at a working hardness of approximately 300 HB. Due to their increased chromium content these grades display a higher corrosion resistance. The steels' polishability and weldability properties are good – likewise their machinability. These corrosion-resistant steel grades are mainly used for the processing of chemically aggressive plastics like PVC.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade with outstanding polishability. This exceptionally pure premium steel grade is a derivative of Formadur® 2316, featuring better wear resistance and greater dimensional stability after machining.

Plastic moulding for large moulds

The percentage of plastic parts used in the construction of automobiles and other vehicles is steadily rising. The size of the required moulds is likewise increasing, to the extent that the steel ingots now need to have cross sections up to 2 metres and can weigh up to 100 tons. The demands made on the moulds used to produce the pre-machined plastic moulds are determined on the one hand by the large plastic product dimensions and on the other hand by the required surface quality of the parts (e.g. bumpers, mudguards or bonnets) which have to be supplied ready-to-install.

The moulds used in the manufacturing of large plastic parts have to have good machinability and high dimensional stability to be able to guarantee distortion-minimized finishes.

Another client extra

As a special service Deutsche Edelstahlwerke offers its clients the pre-machining of large moulds. The electronic transfer of CAD data enables us to manufacture large moulds with very short delivery times.

High-performance steel for large moulds

The range of high-quality steel grades for plastic moulding designed for large moulds at Deutsche Edelstahlwerke covers quenched and tempered steel grades, which are characterized by high hardenability and machinability as well as by excellent polishability and texturing properties.

The product range consists of the following steel grades. Please see the product table below for property comparisons.

Formadur® 2311 is a quenched and tempered standard steel grade supplied at a hardness of 280 to 325 HB. The grade is produced with minimum sulphur content and is characterized by its good machinability, weldability and nitriding suitability. It is wear resistant and displays sufficiently high robustness. Quenching and tempering is limited to a thickness of around 400 mm.

Formadur® 2312 is a pre-hardened plastic-moulding steel grade supplied at a hardness of 280 to 325 HB. With an increased sulphur content this grade shows very good machinabilty and is well suited for nitriding. However, polishability and texturing properties are limited.

Formadur® 2711 is a tough quenched and tempered steel grade for plastic moulding with a high degree of purity. This grade is supplied at a hardness of 355 to 400 HB (square, flat) and 370 to 410 HB (diameter). It has excellent texturing properties, is well suited to mirror polishing and can be hard chromium plated. It has a higher compression strength than Formadur® 2738. Formadur® 2711 is preferential for plastic moulds with increased demands on compression strength and wear resistance.

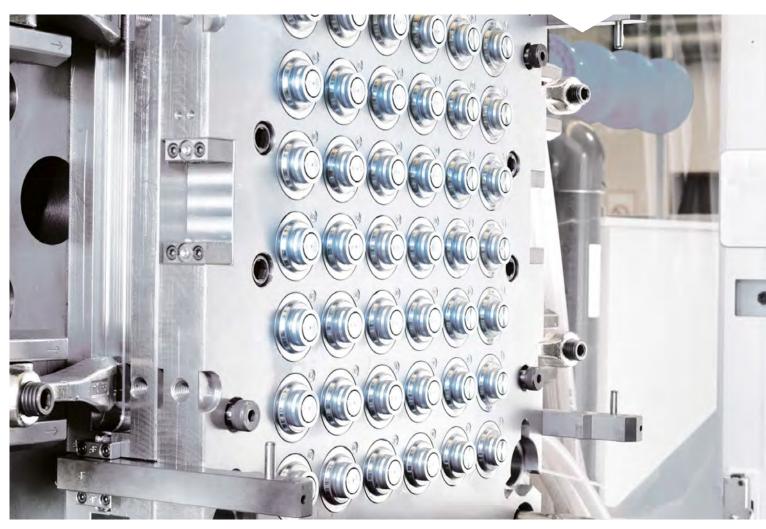
Formadur® 2738 is a quenched and tempered steel for plastic moulding, is supplied at a hardness of 280 to 325 HB, appropriate for texturing and is a derivative of Formadur® 2311. It exhibits high machinability and polishability and is more easily quenched and tempered than Formadur® 2311. Formadur® 2738 is used for large plastic moulds with deep engraving where there is intensive impact on the core.

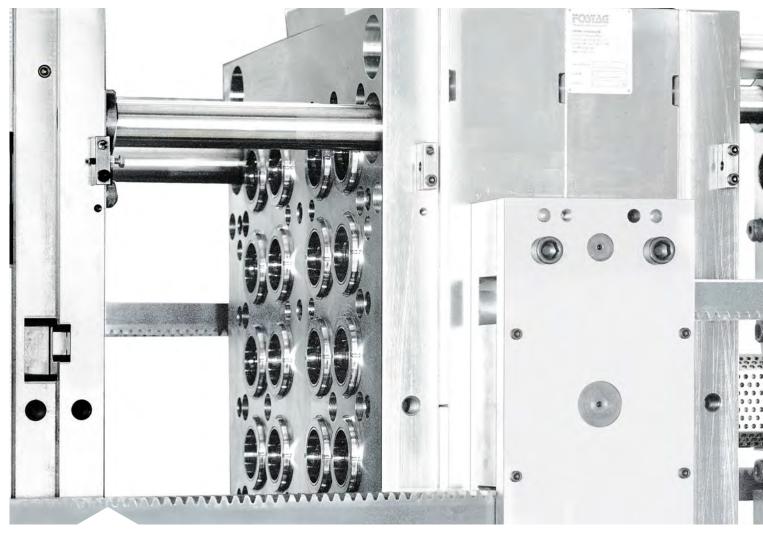
Formadur® 320 is a pre-hardened steel for plastic moulding, being supplied at a hardness of 280 – 325 HB and of 310 – 355 HB. It is extremely easily textured and machined as well as being unproblematic when polished and welded. In comparison to Formadur® 2738 the quenching and tempering properties have been further improved. Formadur® 320 is recommended for dies and moulds of very large dimensions for products such as bumpers, plastic containers, TV cases and dashboards.

Mould frames

Following the two-piece construction principle, these dies consist of a mould frame and respective mould inserts. Depending on the size of the plastic product to be manufactured, up to 192 mould inserts (so-called cavities) can be integrated into a single mould frame.

Typical end products for this technology include screw caps for beverage bottles and PET preforms.


High-performance steel for mould frames


The range of high-quality steel grades for mould frames at Deutsche Edelstahlwerke include pre-hardened steel grades with excellent machinability. Other grades are available which are corrosion resistant with particularly low compression strength. Please see the product table for property comparisons.

Formadur® 2085 combines excellent corrosion resistance with economical machinability for sulphurized plastic moulding steel. This is why this quenched and tempered steel grade is the perfect fit for mould frames. Formadur 2085® is supplied at a hardness of 280 to 325 HB.

Formadur® 2312 is a pre-hardened steel grade for plastic moulding supplied at a hardness of 280 to 325 HB. This grade shows very good machinabilty and is well suited for nitriding. Texturing properties and polishability are restricted by its high sulphur content.

Corroplast® is a low-carbon stainless steel which machines more easily than any other stainless steel for plastic moulding known to date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is particularly suitable where there is a high corrosion potential. Further advantages are exceptional toughness, particularly low stress and good weldability.

Moulds for plastic-extrusion lines

The plastification, transport and compression of the melted plastic necessitate an extrusion line.

The different elements of the extrusion line include cylinders, screws, screw tips, retaining valve and other components.

Deutsche Edelstahlwerke supplies a product range especially adapted to these needs, consisting of either distortion-minimized, quenched and tempered steel grades with a high wear resistance, or steel grades which are to be hardened at a later stage.

High-performance steel grades for plastic extruders

In addition to steel grades such as Formadur® 2891, which are supplied for normal applications and usually in a quenched and tempered condition, Deutsche Edelstahlwerke produces other high-performance steel that meet special demands. These include excellent wear resistance accompanied by exceptional toughness as well as torsion resistance. All of the grades listed meet these requirements. Please see the product table for property comparisons.

Cryodur® 2990 is a newly developed, ledeburitic cold-tool steel with great hardness, good toughness and a high tempering strength. At the same time it also exhibits very high wear resistance. Its high compression strength and resistance to abrasive and adhesive wear lend this special steel an ideal property profile for use with pressure pads and plastic moulds.

Formadur® 2891 is an aluminium-alloyed nitriding steel specially designed for extruders. It is used for plasticising devices, screw cylinders and extruder screws.

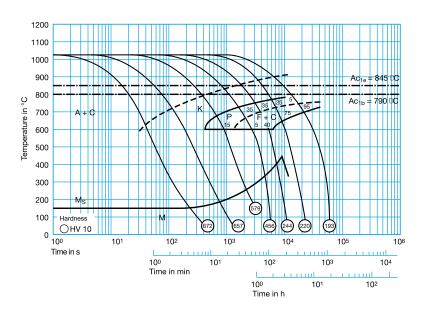
Thermodur® 2343 EFS and Thermodur® 2343 EFS Superclean are the first choice when it comes to torsion resistance and toughness. Surface-treated screws made of these highperformance steel grades are ideal even for the most demanding purposes.

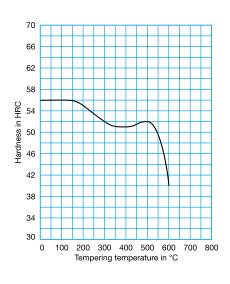
Steel for plastic moulding and their properties

Brand	Wear resistance	Corrosion resistance	Toughness	Polishability
Formadur® 2083	• •	• •	•	• •
Formadur® 2083 Superclean	• •	• •	• •	• •
Formadur® 2085	•	• •	•	0
Formadur® 2162	• •	•	•	• • •
Formadur® 2190 Superclean	• •	• •	•	• • •
Formadur® 2311	•	•	•	•
Formadur® 2312	•	•	•	0
Formadur® 2316	•	• •	•	• •
Formadur® 2316 Superclean	•	• •	•	• •
Thermodur® 2343 EFS	• •	•	• •	• •
Thermodur® 2343 EFS Superclean	• •	•	• • •	• • •
Thermodur® 2344 EFS	• •	•	• •	•
Thermodur® 2344 EFS Superclean	• •	•	• •	• •
Cryodur® 2357	• •	•	• •	• •
Formadur® 2361	• • •	• •	•	•
Cryodur® 2363	• •	•	•	•
Cryodur® 2379	• • •	•	0	0
Cryodur® 2709	• •	•	• • •	• • •
Formadur® 2711	•	•	•	•
Formadur® 2738	•	•	•	•
Formadur® 2764	• •	•	• •	• • •
Cryodur [®] 2767	• •	•	• •	• •
Cryodur® 2842	• •	•	•	• •
Formadur® 2891	• • •	•	• •	0
Cryodur® 2990	• • •	•	•	•
Rapidur® 3343	• • •	•	•	0
Formadur® PH X Superclean	•	• • • •	• • •	• • • •
Formadur® PH 42 Superclean	•	•	• •	• • • •
Formadur® 320	•	•	•	• •
Corroplast®	•	• •	• •	•

Texturing properties	Weldability	Machinability	Nitridability
• •	•	• •	•
• •	•	• •	•
0	•	• • •	•
• • •	• •	• • •	•
• •	•	• •	• •
• •	• •	• •	• •
0	•	• • •	• •
• •	• •	• •	•
• •	• •	• •	•
• •	• •	• •	• •
• •	• •	• •	• •
• •	• •	• •	• •
• •	• •	• •	• •
• •	•	• •	-
0	0	•	• • •
•	0	• •	•
0	0	•	•
• • •	• • •	• •	• •
• •	• •	• •	• •
• •	• •	• •	• •
• • •	• •	• •	-
• •	• •	• •	-
• •	0	• •	-
0	0	• •	• • •
0	0	• •	•
•	0	•	•
• • •	• • • •	• •	• •
• • •	• • • •	• •	• •
• • •	• • •	• • •	• •
•	• • • •	• • • •	• •

Material Data Sheets

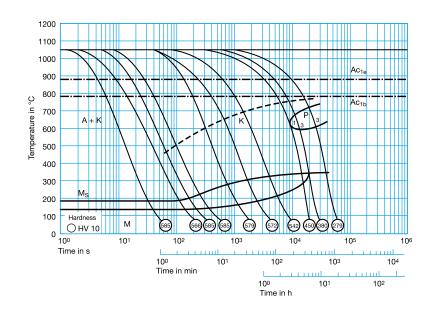

Consecutively the most important materials in the area of plastic mould steel with its steel properties, standards, physical properties, applications and heat treatment.

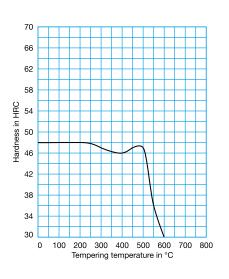

Formadur® 2083/2083 Superclean
Formadur® 2085
Formadur® 2162
Formadur® 2190 Superclean
Formadur® 2311
Formadur® 2312
Formadur® 2316/ 2316 Superclean
Thermodur® 2343 EFS/2343 EFS Superclean
Thermodur® 2344 EFS/ 2344 EFS Superclean
Cryodur® 2357
Formadur® 2361
Cryodur® 2363
Cryodur® 2379
Cryodur® 2709
Formadur® 2711
Formadur® 2738
Formadur® 2764
Cryodur® 2767
Cryodur® 2842
Formadur® 2891
Cryodur® 2990
Rapidur® 3343
Formadur® PH X Superclean
Formadur® PH 42 Superclean
Formadur® 320/320 Superclean
Corroplast®

Formadur® 2083/2083 Superclean

X40Cr14	C 0.40 Cr 13.00										
Steel properties	Corrosion-resistant, good polishability. We recommend the use of Formadur® 2083 Superclean for the highest demands on polishability.										
Standards	AISI 420	420 AFNOR Z40C14									
Standards	Coefficient of thermal of bei °C 10-6 m/(m • K) Quenched and temperor Thermal conductivity a W/(m • K)	20 - 200 11.6 150 24.0	20 - 250 11.8 300 24.6	20 - 300 12.0 350 24.9	20 - 350 12.3 400 24.4	20 - 400 12.4 500 23.7	20 - 450 12.5	20 - 500 12.6			
Applications	Quenched and tempered Moulds for processing p		corrosive	reactions							
Heat treatment	Soft annealing °C 760 – 800	Cooling Furnace)	odolions.		Hardness HB max. 230					
	Hardening °C 1000 – 1050	Quencl Oil or saltbath	n ing n, 500 – 55	o °C		Hardness after quenching HRC 56					
	Tempering °C HRC	100 56	200 55	300 52	400 51	500 52	600 40				

Time-temperaturetransformation diagram

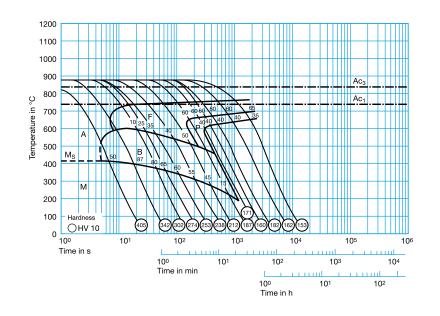


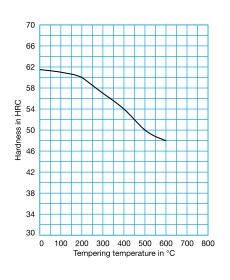


Formadur® 2085

X33CrS16	C 0.33 Cr 16.00 S 0.05 Ni 0.50										
Steel properties	Pre-hardened corrosion-resistant mould frame steel, hardness in as-delivered condition of 280 to 325 HB. Improved machinability in comparison to Formadur® 2316.										
Standards	AISI ~420FM										
Applications	Mould frames, components, plastic	Mould frames, components, plastic moulds.									
Heat treatment	Soft annealing °C 850 – 880	Cooling Furnace			Hard max.	Iness HB 230					
	Hardening °C 1000 – 1050	Quenc Oil	hing		Hardness after quenching HRC						
	Hardness after quenching HRC	100 48	200 48	300 47	400 46	450 47	500 47	550 36	600 30		

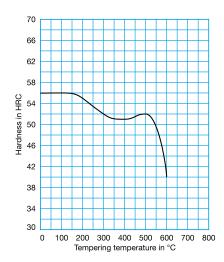
Time-temperaturetransformation diagram

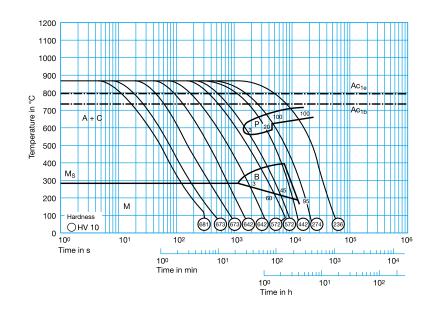


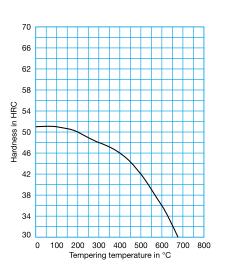


Formadur® 2162

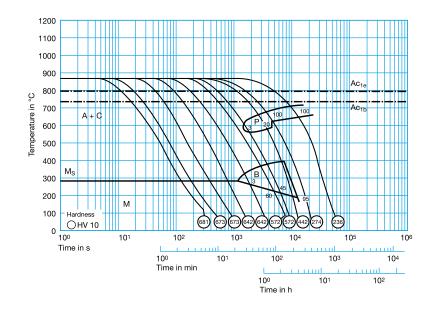
21MnCr5	C 0.21 Mn 1.30	Cr 1.20								
Steel properties	Case hardening	ase hardening steel, good polishability, suitable for cold hobbing.								
Standards	AISI ~P2									
Physical properties	Coefficient of the bei °C 10-6 m/(m • K) Thermal conductors W/(m • K)	nermal expansion	20 - 100 12.2 20 39.5	20 - 200 12.9 350 36.5	20 - 300 13.5 700 33.5	20 - 400 13.9	20 - 500 14.2	20 - 600 14.5	20 - 700 14.8	
Applications	Mirror-finished p	lastic moulds and g	uide pins.							
Heat treatment	Soft annealing 670 – 710	C	Cooling Furnace				Hardnes max. 210			
	Carburizing Intermediate annealing °C 870 – 900 620 – 650		Hardenii °C 810 – 84	0 Oi	uenching I or saltbat 0 – 220°C	,		hardness enching H		
	Tempering °C HRC		100 61	200 60	300 57	400 54	500 50	600 48		

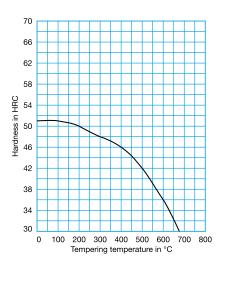

Time-temperaturetransformation diagram


Formadur® 2190 Superclean


(X37Cr13)	C 0.37 S	i 0.90	Mn 0.50	Cr 13.60	V 0.30								
Steel properties	Corrosion-	Corrosion-resistant, very good polishability.											
Physical properties	Coefficier	Coefficient of thermal expansion											
	at °C			20 - 100	20 - 150	20 - 200	20 - 250	20 - 300	20 - 350	20 - 400	20 - 450	20 - 500	
	10 ⁻⁶ m/(m	• K)		10.7	11.0	11.2	11.5	11.7	11.9	12.1	12.3	12.4	
	Quenched	d and te	mpered										
	Thermal o	conduct	ivity at °C		23	150	300	350	400	500			
	W/(m • K))			21.5	23.2	23.9	24.3	24.2	24.0			
	Quenched	d and te	mpered										
Applications	Moulds for	r proces	sing of co	orrosive pl	astics.								
Heat treatment	Soft anne	aling °C	;		Cooling				Hardness HB				
	760 – 800	760 – 800				Furnace				max. 230			
	Hardening	g °C			Quenchi	ng			Hardness after quenching HRC				
	1000 – 1050				Oil or				56				
	saltbath, 500 – 550 °C												
	Tempering	g °C			100	200	300	400	500	600			
	HRC				56	55	52	51	52	40			

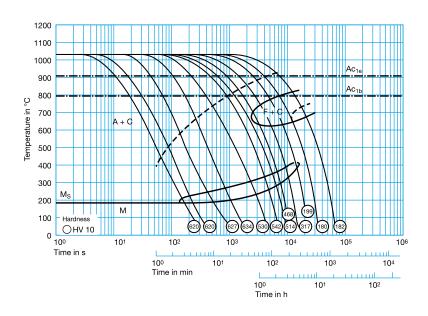
40CrMnMo7	C 0.40 Mn 1.50	Cr 1.90	Mo 0.20)						
Steel properties	Pre-hardened plas suitable for textur						ion 280 to	325 HB.	Good ma	ichinability,
Standards	AISI P20									
Physical properties	Coefficient of the at °C 10-6 m/(m • K) Quenched and to Thermal conduct W/(m • K) Quenched and to	20 - 100 12.6 empered	20 - 150 12.8	20 - 200 13.0 23 32.5	20 - 250 13.3 150 32.9	20 - 300 13.5 300 31.3	20 - 350 13.7 350 30.2	20 - 400 13.9 400 29.5	20 - 450 14.1 500 27.4	20 - 500 14.3
Applications	Plastic moulds, m	ould fram	es for plas	stic mould	ls and pre	essure cas	sting mou	lds and re	cipient sle	eeves.
Heat treatment	Soft annealing °C 710 – 740			Cooling Furnace			Hardnes max. 235			
	Hardening °C 840 – 870			Quenchi Oil or saltbath,	ng 180 – 220	0°C	Hardnes 51	s after qı	uenching	HRC
	Tempering °C HRC			100 51	200 50	300 48	400 46	500 42	600 36	700 28

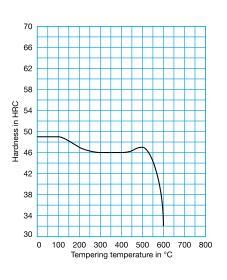

Time-temperature-transformation diagram



40CrMnMoS8-61)	C 0.40 Si 0.35 Mn 1.50 Cr 1.90 Mo).20 S	0.05							
Steel properties	Quenched and tempered plastic mould ste Improved machinability in comparison with						HB ir	ı as-deli\	ered con	dition.
Standards	AISI P20+S									
Physical properties	Coefficient of thermal expansion at °C	20 - 1	00	20 -	- 200	20 -	300			
	10⁻⁶ m/(m • K) Annealed	12.5		13.4	4	13.9				
	10 ⁻⁶ m/(m • K) Quenched and tempered	12.3		13.0)	13.7				
	Thermal conductivity at °C	100	150	0	200	250	300			
	W/(m • K) Annealed	40.2	40.	.9	40.3	40.0	39.0)		
	W/(m • K) Quenched and tempered	39.8	40.	.4	40.4	39.9	39.0)		
Applications	Plastic moulds, mould frames for plastic ar	nd press	ure c	astin	g moul	ds, reci	pient :	sleeves,	brake die	S.
Heat treatment	Soft annealing °C	Coolir	ng				Hard	dness H	В	
	710 – 740	Furna	се				max	. 235		
	Stress-relief annealing °C	Stress	s-reli	ef an	nealin	a °C	Coo	lina		
	(Annealed)				tempe	-	Furn	-		
	approx. 600	appro				,				
		tempe	ring t	emp	erature	•				
	Hardening °C	Quen	ching	l			Har	dness at	ter quen	ching HRC
	840 – 870	Oil or					51			_
		saltba	th, 18	30 – 2	220 °C					
	Tempering °C	100	20	00	300	4	00	500	600	700
	HRC	51	50)	48	4	6	42	36	28

Time-temperature-transformation diagram

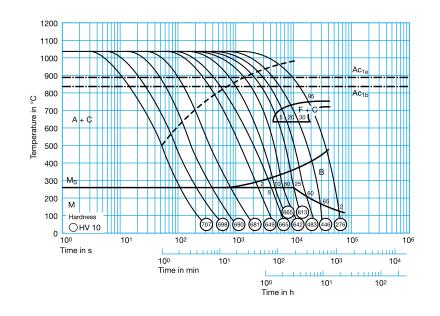


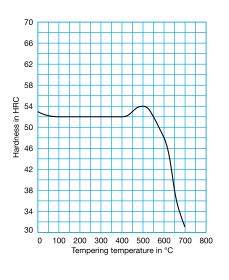

¹⁾ S can be raised between 0.05 and 0.1 % whereas Ni can be left out completely.

Formadur® 2316/2316 Superclean

X38CrMo16	C 0.36 Cr 16.00 Mo 1.20)								
Steel properties	Increased corrosion resistar is supplied in a quenched a		•		,	•	•	•	•	ırade
Standards	AISI 420mod									
Physical properties	Coefficient of thermal exp at °C 10 ⁻⁶ m/(m • K) Quenched and tempered		20 - 150 10.7	20 - 200 10.8	20 - 250 10.9	20 - 300 11.1	20 - 350 11.3	20 - 400 11.5	20 - 450 11.6	20 - 500 11.7
	Thermal conductivity at °C W/(m • K) Quenched and tempered		23 23.5	150 24.2	300 24.3	350 24.4	400 24.1	500 23.2		
Applications Heat treatment	Moulds for processing plast Soft annealing °C 760 – 800	cics with c	Cooling Furnace	eactions.			Hardnes	•		
	Hardening °C 1020 – 1050		Quenchi Oil or saltbath,	ng 500 – 550	o°C		Hardnes 49	s after qu	uenching	HRC
	Tempering °C HRC		100 49	200 47	300 46	400 46	500 47	600 32		

Time-temperature-transformation diagram

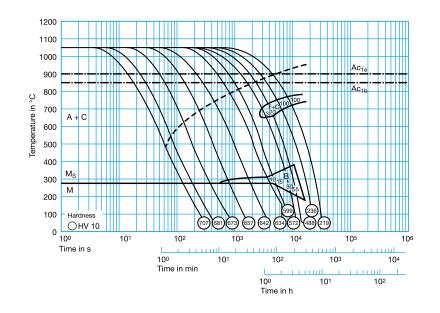


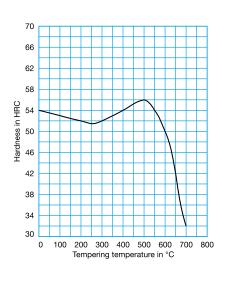


Thermodur® 2343 EFS/2343 EFS Superclean

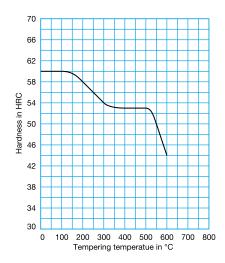
X37CrMoV5-1	C 0.38 Si 1.00 Cr 5.30	Mo 1.30	V 0.40							
Steel properties	High hot tensile strength an Can be water-cooled to a lir			thermal o	conductiv	ity and ins	susceptibi	lity to hot	cracking.	
Standards	AISI H11	AFNOR	Z38CDV5							
Physical properties	Coefficient of thermal exp at °C 10° m/(m • K) Quenched and tempered Thermal conductivity at °C	20 - 100 11.7	20 - 150 11.9 23	20 - 200 12.2 300	20 - 250 12.4 400	20 - 300 12.6 500	20 - 350 12.8	20 - 400 13.0	20 - 450 13.1	20 - 500 13.3
	W/(m • K) Quenched and tempered		24.4	28.2	28.9	28.8				
Applications	Hot-work steel for universal metals, forging dies, moulds We recommend the use of	s, screws	and barre	ls for plas	stic proce	ssing, shri	nk rings a	ınd hot-sh	near blade	es.
Heat treatment	Soft annealing °C 750 – 800	Cooli Furna	•			Hardnes max. 230				
	Stress-relief annealing °C approx. 600 – 650	Cooli Furna	•							
	Hardening °C 1000 – 1030	Oil or	ching ath, 500 –	550 °C		Hardnes 54	s after qu	ienching	HRC	
	Tempering °C HRC	100 52	200 52	300 52	400 52	500 54	550 52	600 48	650 38	700 31

Time-temperaturetransformation diagram

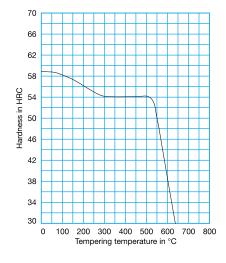




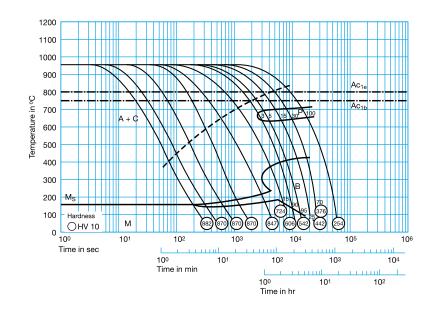
Thermodur® 2344 EFS/2344 EFS Superclean

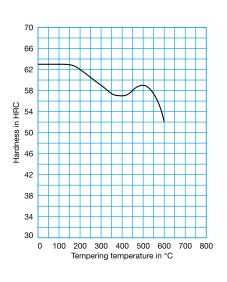

X40CrMoV5-1	C 0.40 Si 1.00 Cr 5.30	Mo 1.40	V 1.00							
Steel properties	High hot-wear resistance, insusceptibility to hot crac	•		•	•		ermal cor	nductivity	and	
Standards	AISI H13		AFNOR	Z40CDV5	5					
Physical properties	Coefficient of thermal ex at °C 10-6 m/(m • K)	pansion	20 - 100 10.9) 20 - 200 11.9	20 - 300 12.3	20 - 400 12.7	20 - 500 13.0	20 - 600 13.3	20 - 700 13.5)
	Thermal conductivity at W/(m • K) Annealed W/(m • K) Quenched and		23 27.2 125.5	350 30.5 27.6	700 33.4 30.3					
Applications	Hot-work steel for universmetals, forging moulds, mblades. We recommend the use	oulds, scre	ws and b	arrels for p	plastic pro	cessing,	nitrided ej	jectors ar	d hot-sh	
Heat treatment	Soft annealing °C 750 - 800	Cooling Furnace			Hardnes					
	Hardening °C 1010 – 1030	Quench Air, oil o saltbath	•	50 °C	Hardnes 54	ss after q	uenching	HRC		
	Tempering °C HRC	100 53	200 52	300 52	400 54	500 56	550 54	600 50	650 42	700 32

Time-temperature-transformation diagram

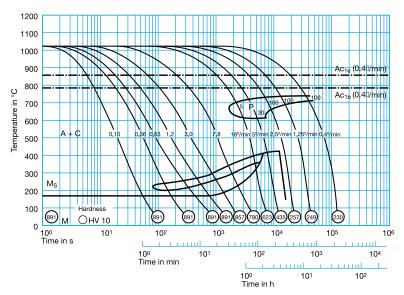


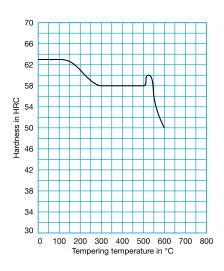
(50CrMoV1315)	C 0.50 Si 0.30 Mn 0.70 Cr 3.	35 Mo 1.6	60 V 0.2	5				
Steel properties	High toughness and wear resistan good polishability.	ice, high co	mpressio	n strengt	h combine	ed with di	mensiona	ıl stability and
Standards	AISI S7							
Physical properties	Coefficient of thermal expansion	n						
	at °C	20 - 20	0 20 - 40	00				
	10 ⁻⁶ m/(m • K)	12.2	12.5					
	Thermal conductivity at °C	20	200	400				
	W/(m • K)	28.9	30.0	31.0				
Applications	Cold-work tool steel for punching tools, plastic moulds and pelleters		lds, scrap	shears,	piercing d	lies, hobb	ers, coinir	ng dies, deburring
Heat treatment	Soft annealing °C 810 - 850	Coolin Furnac	·		Hardn approx	ess HB		
	Stress-relief annealing °C approx. 600	Coolin Furnac	•					
	Hardening °C 920 – 970	Quenc Air or o	_		Hardn 60 – 62		quenchir	ng HRC
	Tempering °C	100	200	300	400	500	550	600
	HRC	60	58	54	53	53	50	44



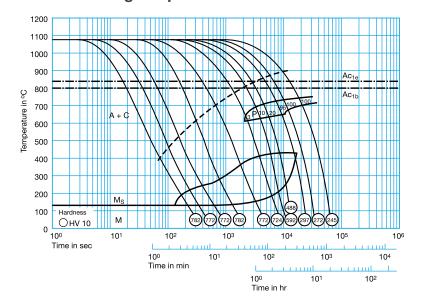

X91CrMoV18	C 0.90 Si < 1.00 Cr 18.00 Mo	1.00 V 0	.10								
Steel properties	Corrosion-resistant steel for plastic	moulding	characte	rized by a	very god	d wear re	esistance.				
Physical properties	Coefficient of thermal expansion at °C 10-6 m/(m • K) Thermal conductivity at °C	20 - 20 10.5 20	0 20 - 20 11.0	0 20 - 30 11.0	00 20 - 40 12.0	00					
	W/(m • K)	29									
Applications	Plastic moulds, injection nozzles, va	lve comp	onents ar	nd ball be	arings.						
Heat treatment	Soft annealing °C 800 – 850	Coolin Slow, e	g e.g. furnac	е		Hardn max. 2	ess HB 165				
	Hardening °C Quenching Hardness after quenching HRC 1000 – 1050 Oil 59										
	Tempering °C HRC	100 58	200 56	300 54	400 54	500 54	550 50	600 40			

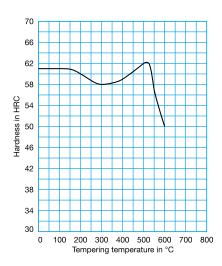
X100CrMoV5	C 1.00 Si 0.30 Mn 0.50 Cr 5	5.00 Mo 0.	95 V 0.2	0							
Steel properties	High dimensional stability during	heat treatm	ent. High	wear resi	stance ar	nd toughn	ess.				
Standards	AISI A2	AFNO	R Z100C	DV5							
Physical properties	Thermal conductivity at °C W/(m • K)	20 15.8	350 26.7	700 29.1							
Applications	Cutting tools, rolls, shear blades plastics.	utting tools, rolls, shear blades, cold pilger mandrels, cold stamping tools and moulds for processing astics.									
Heat treatment	Soft annealing °C 800 – 840	Coolir Furnac	•		Hardn max. 2	ess HB 31					
	Stress-relief annealing °C approx. 650	Coolir Furnac	•								
	Hardening °C 930 – 970	Quenching Hardness after quenching HRC Air, oil or 63 saltbath, 500 – 550 °C									
	Tempering °C HRC	100 63	200 62	300 59	400 57	500 59	600 52				


Time-temperature transformation diagram

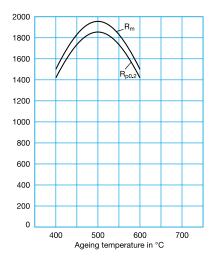


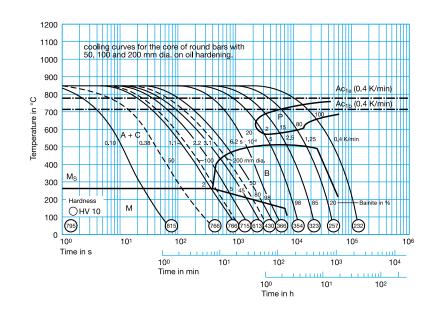
X153CrMoV12	C 1.55 Si 0.30 Mn 0.35 Cr 12.	00 Mo 0	.75 V 0.	90						
Steel properties	12% ledeburitic chromium steel. M endurance and resistance to tempe					_		ng-edge		
Standards	AISI D2	AFNO	R Z160CE)V12						
Physical properties	Coefficient of thermal expansion at °C 10-6 m/(m • K)		00 20 - 20 11.5	00 20 - 30 11.9	00 20 - 40 12.2	00				
	Thermal conductivity at °C W/(m • K)	20 16.7	350 20.5	700 24.2						
Applications	thicknesses up to 6 mm, precision	nread rolling rolls and thread rolling dies, cold extrusion tools, cutting and stamping tools for sheet icknesses up to 6 mm, precision cutting tools up to 12 mm. Cold pilger mandrels, circular-shear blades, eep-drawing tools, pressure pads and highly wear-resistant plastic moulds.								
Heat treatment	Soft annealing °C 830 – 860	Coolin Furnac	·		Hardn max. 2	ess HB 50				
	Stress-relief annealing °C 650 –700	Coolin Furnac	•							
	Hardening °C 1000 – 1050	Quenc Air, oil saltbat	-	50 °C	Hardn 63	ess after	quenchir	ng HRC		
	Tempering °C HRC	100 63	200 61	300 58	400 58	500 58	525 60	550 56	600 50	
Special heat treatment	Hardening °C 1050 – 1080	Quenc Air, oill saltbat	•	50 °C	Hardn 61	ess after	quenchii	ng HRC		
	Tempering °C (three times) HRC	100 61	200 60	300 58	400 59	500 62	525 62	550 57	600 50	

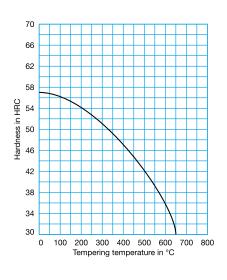

Time-temperaturetransformation diagram Hardening temperature: 1030 °C



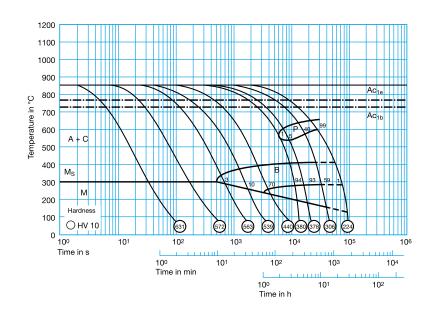
Tempering diagram

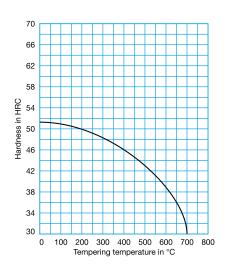

Time-temperaturetransformation diagram Hardening temperature: 1080 °C


(X3NiCoMoTi18-9-5)	C ≤ 0.02 Mo 5.00 Ni 18.0	00 Co 10	0.00 Ti 1	1.00						
Steel properties	Low susceptibility to distort good toughness.	ion, precip	oitation ha	ardening,	high yield	point and	d tensile s	trength co	ombined v	with
Standards	AISI 18MAR300									
Physical properties	Coefficient of thermal exp at °C 10-6 m/(m • K) Precipitation hardened Thermal conductivity at °C	20 - 100 10.1	10.3	10.5	10.7	10.9 350	11.1	11.3	20 - 450 11.5	20 - 500 11.8
	W/(m • K) Precipitation hardened		18.4	20.4	22.7	23.2	23.5	24.0		
Applications	Casings for cold extrusion t design.	ools, pres	sure cast	ing mould	ls for light	metals a	nd plastic	moulds c	of intricate	•
Heat treatment	Soft annealing °C 820 – 850 Ausscheidungshärte °C 490 / 6 hr / (Air)		Cooling Water Attainate approx.	ole hardn	ess HRC		Hardnes max. 340			

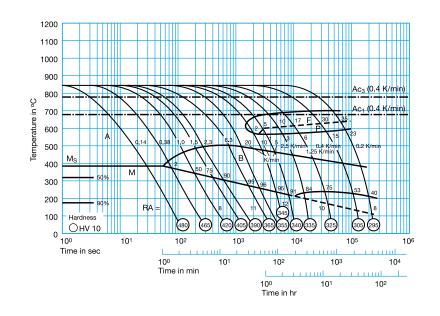

Precipitation diagram

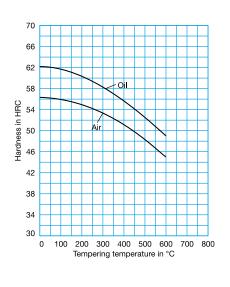
54NiCrMoV6	C 0.55 Cr 1.10	Ni 1.70	Mo 0.5	0 V 0.10)						
Steel properties	Pre-hardened pla 410 HB (round). I										
Standards	AISI ~L6										
Physical properties	Coefficient of the at °C 10-6 m/(m • K) Quenched and to Thermal conductors W/(m • K)	20 – 10 12.2 empereo	00 20 – 19 12.5 d	50 20 – 2 12.7 23 30.5	00 20 – 2 13.0 150 32.1	50 20 – 3 13.3 300 30.8	00 20 – 3 13.5 350 29.6	50 20 – 4 13.8 400 28.7	00 20 – 4: 13.9 500 26.5	50 20 – 5 14.1	00
Applications	Quenched and to	-									
Heat treatment	Soft annealing °6	С	Coolin Furnac	U	<u> </u>	Hardn max. 2	ess HB				
	Hardening °C 830 – 870		Quenc Air or c	•		Hardn 57	ess after	quenchir	ng HRC		
	Tempering °C HRC		100 56	200 54	300 51	400 47	450 44	500 42	550 39	600 36	650 30


Time-temperaturetransformation diagram

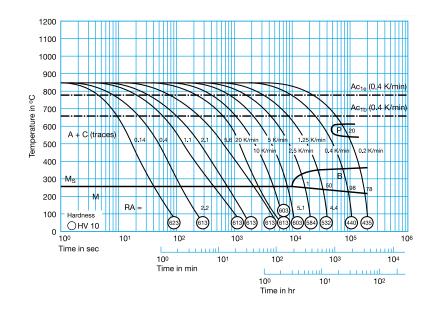


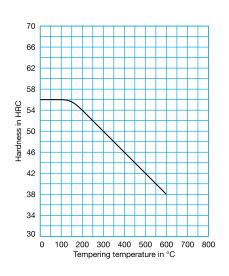
40CrMnNiMo8-6-4	C 0.40 Mn 1.50 Cr 1.90 Ni 1.00	Mo 0.20)									
Steel properties	Pre-hardened plastic mould steel, has suitable for texturing, improved through											
Standards	AISI P20+Ni											
Physical properties	Coefficient of thermal expansion at °C 10-6 m/(m • K)	20 - 100 11.1	20 - 200 12.9	20 - 300 13.4	20 - 400 13.8	20 - 500 14.2	20 - 600 14.6	20 - 700 14.9				
	Thermal conductivity at °C	20	350	700								
	W/(m • K)	34.5	33.5	32.0								
Applications	Large plastic moulds with deep engr development of Formadur® 2311, a p have to display high core strength. T Formadur® 2738 ia a micro-alloyed, good machinability, outstanding poli	ore-harden he additio vacuum-d	ed plastic nal nickel egassed s	mould st content c steel with	teel for us of 1 % inc the follow	e in large reases thr	moulds, v ough hard	vhich also dening.				
Heat treatment	Soft annealing °C	Cooling			Hardnes	s HB						
	710 – 740	Furnace			max. 235	5						
	Hardening °CQuenchingHardness after quenching HRC840 – 870Polymer or oil51											
	Tempering °C	100	200	300	400	500	600	700				
	HRC	51	50	48	46	42	39	28				


Time-temperature-transformation diagram

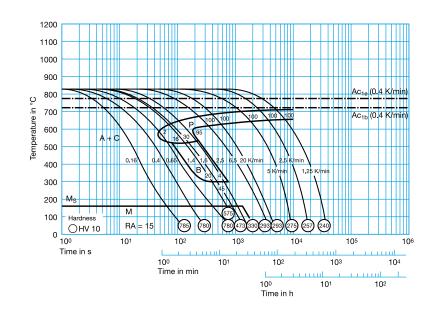


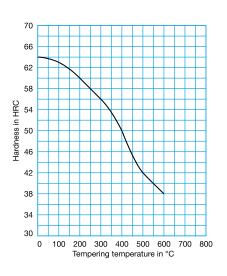
(X19NiCrMo4)	C 0.19 Cr 1.	30 Mo 0.20 Ni 4.10	ס								
Steel properties	Case-hardenir	ng steel, high core stre	ength, go	od polisha	bility.						
Standards	AISI ~P21	ISI ~P21									
Physical properties	Coefficient of at °C 10-6 m/(m • K)	thermal expansion	20 - 10 12.1	0 20 - 20 13.0	0 20 - 30 13.1	0 20 - 40 13.5	0				
	Thermal cond W/(m • K)	luctivity at °C	20 33.5	350 32.5	700 32.0						
Applications	Highly stresse	d plastic moulds.									
Heat treatment	Soft annealin 620 – 660	g °C	Coolin Furnac	·			Hardn max. 2	ess HB 250			
	Stress-relief a	annealing °C	Coolin Furnac	•							
	Carburizing °C 860 – 890	Intermediate annealing °C 600 – 630	Harder ° C 780 – 8		Quence Oil or saltbat 180 – 2	h,		ess after ching HRC			
	860 – 890	600 – 630	800 – 8	30	Air		56				
	Tempering °C after oil harde after air harde	ening HRC	100 62 56	200 60 55	300 58 53	400 56 51	500 52 48	600 49 45			


Time-temperaturetransformation diagram

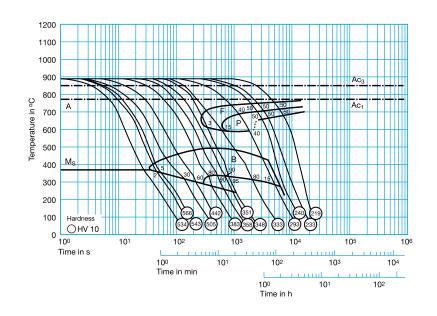


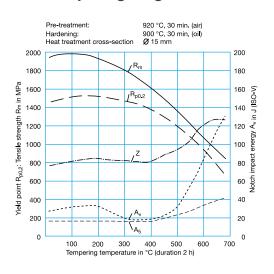
45NiCrMo16	C 0.45 Si 0.25	Mn 0.35	Cr 1.40	Mo 0.2	20 Ni 4.0	00						
Steel properties	High hardenabilit	y and toug	hness, h	ghly suit	able for p	olishing,	texturing	and EDM	machining	j.		
Standards	AISI 6F3											
Physical properties	at °C											
	10 ⁻⁶ m/(m • K) Quenched and t	11.3 empered	11.7	11.9	12.2	12.5	12.2	12.0	12.1	12.4		
	Thermal conduc	tivity at °C	С	23	150	300	350	400	500			
	W/(m • K) Quenched and t	empered		31.0	34.0	33.9	34.1	33.2	31.2			
Applications	Cutlery moulds, of bending tools, pla	Ü			al, billet-s	hear blad	es, drawi	ng jaws, s	olid embo	ssing and		
Heat treatment	Soft annealing ° 610 – 650	С		Coolin Furnac	3		Hardn max. 2	ess HB 60				
	Stress-relief ann approx. 600 – 65	•		Coolin Furnac	•							
	Hardening °C 840 – 870											
	Tempering °C			100	200	300	400	500	600			
	HRC			56	54	50	46	42	38			


Time-temperature-transformation diagram

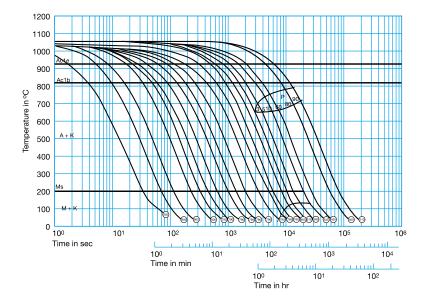


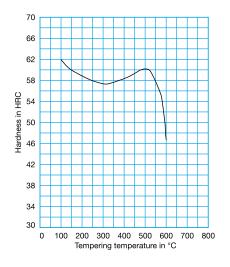
90MnCrV8	C 0.90 Si 0.20 Mn 2.00	Cr 0.40	V 0.10								
Steel properties	Good cutting-edge endura	Good cutting-edge endurance, high hardenability, dimensionally stable during heat treatment.									
Standards	AISI O2	AFNOR	90MV8								
Physical properties	Coefficient of thermal exp	Coefficient of thermal expansion									
	at °C		20 - 10	0 20 - 20	0 20 - 30	0 20 - 40	0 20 - 50	0 20 - 600	20 - 700		
	10 ⁻⁶ m/(m • K)		12.2	13.2	13.8	14.3	14.7	15.0	15.3		
	Thermal conductivity at °	С	20	350	700						
	W/(m • K)		33.0	32.0	31.3						
Applications	Tool steel for universal use, tools, drills, reamers, gauge	•		•				-	d-cutting		
Heat treatment	Soft annealing °C		Coolin	g		Hardn	ess HB				
	680 – 720		Furnac	е		max. 2	20				
	Stress-relief annealing °C	;	Coolin	g							
	approx. 650		Furnac	е							
	Hardening °C		Quenc	hing		Hardn	ess after	quenching	HRC		
	790 – 820		Oil or			64					
			saltbat	h, 180 – 2	220 °C						
	Tempering °C		100	200	300	400	500	600			
	HRC		63	60	56	50	42	38			

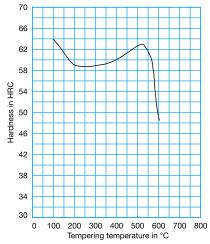

Time-temperature-transformation diagram



34CrAlNi7	C 0.35 Si 0.40	Al 1.00 Cr 1.70	Mo 0.20 Ni 1.	.00		
Physical properties	Quenched and te	mpered QT				
	Heat treatment diameter	Yield stress in MPa,	Tensile strenç in MPa,	gth Elongation at fracture in %	Reduction of area at fracture in %	Notched impact energy
	in mm Ø	R _{p0,2} min.	$R_{_{\rm m}}$	A min.	Z min.	(ISO-V) in J Av min.
	16 – 40	680	900 – 1100	10	_	30
	> 40 – 100	650	850 – 1050	12	_	30
	> 100 – 160	600	800 – 1000	13	-	35
	> 160 – 250	600	800 – 1000	13	-	35
Applications	Aluminium-alloye	d nitriding steel fo	r large cross sect	ions, suitable for p	iston rods, extrude	ers, cylinders.
Hardness at different treatment stages	Soft-annealed H max. 248	В	Nitrided surfa approx. 950	ice hardness HV1		
Heat treatment	Soft annealing °	C Hardening	ı°C Quenc	hing Te	mpering °C	Nitriding °C
	680 – 720	Furnace		•		480 – 570
Thermal expansion	Tempering °C		-191 – +16 2	0 – 100 20 – 200	20 - 300 20 - 40	0 20 – 500
	Linear coefficier	nt of	9.1 1 ⁻	1.1 12.1	12.9 13.5	13.9
	thermal expansi	on α 10 ⁻⁶ K ⁻¹				

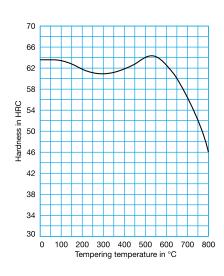

Time-temperaturetransformation diagram




(~X100CrMoV8-1-1)	C 1.00 Si 0.90	Cr 8.00	Mo 1.6	0 V 1.60								
Steel properties	Newly developed ledeburitic cold-work steel with high hardness, good toughness and high tempering resistance combined with high wear resistance.											
Physical properties	Coefficient of the at °C 10-6 m/(m • K)	20 - 100	xpansion 20 - 150 11.6		20 - 25 11.9	0 20 12.0	- 300 O	20 - 350 12.1	20 - 400 12.3	20 - 450 12.4	20 - 500 12.6	
	Thermal condu	activity at	°C	RT 24.0	100 25.9	150 26.8	200 27.		400 27.2	500 26.8		
Applications	cold pilger man	Cutting and punching tools including precision cutting tools, threading dies and rolls, rotary shear blades, cold pilger mandrels, pressure pads and plastic moulds, cold-forming and deep-drawing dies, woodworking tools and cold rolls.										
Heat treatment	Soft annealing 830 – 860	°C		Cooli Furna	•			Hardness HB max. 250				
	Stress-relief ar approx. 650	nealing °	C	Cooli Furna	•							
	Hardening °C 1030¹) – 1080²)		Air, oi	n ching il or ath, 500 -	- 550 °C)	Hardnes 62 – 64	ss after qu	enching H	RC		
	Tempering °C 1) HRC 2) HRC			100 62 64	200 59 59	300 57 59	400 58 60	500 52 60 60 63 63	59	55	600 46 48	

Time-temperaturetransformation diagram

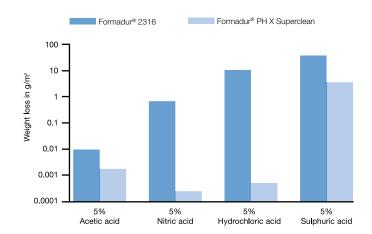
Tempering diagram Above: Hardening 1030 °C Below: Hardening 1080 °C

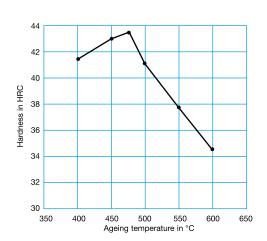


Rapidur® 3343

HS6-5-2C	C 0.90 Si 0.30 M	n 0.30 Cr 4.10	Mo 5.00	V 1.90	W 6.40						
Steel properties	Standard high-spee composition. Theref	-	_	-			ving to its well-b	palanced alloy			
Standards	AISI M2			AFNOR	Z85WD0	CV06-05-04-0)2				
Physical properties	Coefficient of them W/(m • K)	mal expansion at °		20 32.8	350 23.5	700 25.5					
Applications	Plastic moulds with	increased wear res	istance,	screws.							
Heat treatment	Soft annealing °C 770 - 860			Cooling Furnace	;		Hardness HE max. 269	3			
	Stress-relief annea 630 – 650	lling °C		Cooling Furnace							
	1st pre-heating °C up to approx. 400	2nd and 3rd pre-heating °C	Harder °C	ning	Quenc	ning	Tempering °C	Hardness after tempering HRC			
	in an air-circulating furnace	a) 850 b) 850 and 1050	1190 -	1230	a) Saltb b) Oil c) Air	ath, 550 °C	at least twice 530 - 560	64 - 66			
		¹⁾ For cold-forming tools with a complex geometry, a hardening temperature at the lower end of the quoted range is recommended. The stated hardening temperatures apply to saltbath hardening only. For vacuum hardening, we suggest a reduction of 10 °C to 30 °C.									

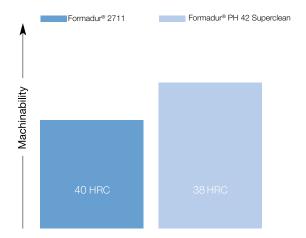
Isothermal time-temperature-transformation diagram




Formadur® PH X Superclean

(X5CrNiCuNb15-5)	C 0.05 Cr 15.00	Ni 4.50	Cu 3.50	Nb +							
Steel properties	It shows excellent	Formadur® PH X Superclean is a corrosion-resistant, precipitation hardened steel with high strength. t shows excellent polishability due to the applied remelting process. Compared to Formadur® 2316, nardness in as-delivered condition and corrosion resistance are improved.									
Physical properties	Coefficient of the	Coefficient of thermal expansion									
	at °C	20 - 100	20 - 150	20 - 200	20 - 250	20 - 300	20 - 350	20 - 400	20 - 450	20 - 500	
	10 ⁻⁶ m/(m • K)	10.4	10.6	10.9	11.1	11.4	11.5	11.7	11.9	12.0	
	Precipitation hardened										
	Thermal conduct	tivity at °C	;	23	150	300	350	400	500		
	W/(m • K)			16.8	20.1	22.1	22.8	23.3	24.1		
	Precipitation har	dened									
Applications		Formadur® PH X Superclean is recommended for tools used in the processing of corrosive plastics. Further applications for components in aircraft and chemical industries.									
Heat treatment	Formadur® PH X Superclean usually is supplied in precipitation-hardened condition with a hardness of 40 HRC.										

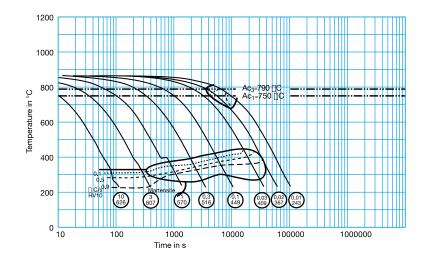
Weight loss diagram

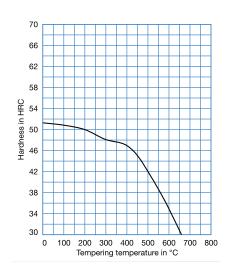

Ageing diagram

Formadur® PH 42 Superclean

(15NiCuAl12-10-10)	C 0.15 Mn 1.50 Ni 3.00	Cu 1.00	AI 1.00							
Steel properties	As-delivered hardness approx. 38 HRC (approx. 1200 MPa). Precipitation hardened, remelted plastic mould steel with exellent polishability and suitability for texturing. Good electrical discharge machinability, machinability and weldability, suitable for nitriding. Improved compressive strength due to higher hardness compared to conventional plastic mould steel.									
Physical properties	Coefficient of thermal exp at °C 10-6 m/(m • K) Precipitation hardened Thermal conductivity at °C W/(m • K) Precipitation hardened	20 – 100 12.6	12.8	20 – 200 13.0 150 29.4	20 – 250 13.3 300 29.8	20 – 300 13.5 350 29.6	13.7	20 – 400 13.9 500 28.2	20 – 450 14.0	20 – 500 14.2
	MPa		206000							
Applications	Formadur® PH 42 Superclea strength, such as highly stre						_	_		
Heat treatment	Formadur® PH 42 Superclean is supplied in precipitation hardened condition with a hardness of approx. 38 HRC. No additional heat treatment is necessary. After repair welding an ageing at 520 °C/1 hr is recommended.									
Special information	Due to its well-balanced composition and its high homogeneity, Formadur® PH42 Superclean has a comparable machinability to Formadur® 2311 and 2738 even at a higher as-delivered hardness approx. 38 HRC. Compared to Formadur® 2711, machinability is significantly improved with a similar hardness level.								evel.	

Machinability




Comparison of machinability of conventional plastic mould steel Formadur® 2711 with Formadur® PH 42 Superclean.

Formadur® 320/320 Superclean

	C 0.34 Mn 0.80 Cr 1.70 Ni 0.50	Mo 0.40							
Steel properties	Heat-treated mould steel with improved quenching and tempering properties in comparison to 1.2738. Good machinability, polishable, weldable and can easily be textured. Formadur® 320 is either available at a hardness of 280 – 325 HB or 310 – 355 HB. This grade offers substantial improvements, especially for building larger and complex moulds. Specific modifications of the grade's components as well as additional smelting and secondary metallurgy ensure Formadur® 320's outstanding properties. We recommend the use of Formadur® 320 Superclean (ESR) for the highest demands.								
Physical properties	Coefficient of thermal expansion								
	at °C	20 - 100	20 - 200	20 - 300	20 - 400	20 - 500	20 - 600	20 - 700	
	10 ⁻⁶ m/(m • K)	11.1	12.9	13.4	13.5	13.8	14.1	14.3	
	Thermal conductivity at °C	20	350	700					
	W/(m • K)	36.0	37.4	33.0					
Applications	Formadur® 320 is highly suitable for I and high demands on core strength, and TV housings to name a few. At a guaranteed.	such as w	ith bump	ers, tailga	tes, fende	ers, spoile	ers, instrur	ment panels	
Heat treatment	Soft annealing °C	Cooling			Hardnes	s HB			
	710 – 740	Furnace			max. 235	5			
	Hardening °C Quenching Hardness after quenching HRC								
	820 – 850	Polymer	or oil		51				
	Tempering °C	100	200	300	400	500	600	700	
	HRC	51	50	48	47	42	35	28	

Time-temperature-transformation-diagram

Corroplast®

	C 0.05 Mn 1.30	S 0.15	Cr 12.50	Additio	ns +						
Steel properties	Corroplast is a new at a supplied hard welding properties	ness of ap			•	•	_	-	•		•
Physical properties	Coefficient of the at °C 10 ⁻⁶ m/(m • K) Precipitation hard	·		20 – 150 10.6	20 – 200 10.9	20 – 250 11.1	20 – 300 11.2	20 – 350 11.4	20 – 400 11.6	20 – 450 11.8	20 – 500 12.0
	Thermal conduct W/(m • K) Precipitation hard	ivity at °C		23 24.6	150 25.7	300 25.8	350 25.7	400 25.4	500 24.7		
	Density at °C kg/dm³			20 7.7							
	Modulus of elasti MPa	city at °C	;	20 214600	150 208600	350 198000					
Applications	Base plates, moul		•		with stanc	dard requir	ements c	n polishal	bility, as w	ell as bei	ng
Typical mechanical properties	in as-delivered condition										
	Heat treatment diameter in mm Ø	Yield str in MPa, R _{p0,2} min		Tensile s in MPa, R _m	strength	Elongati fracture A min.		Reduction fracture Z min.	on of area in %	at	
	170	890		1100		13		42			

Machinability of X33CrS16 and Corroplast® in % (hardness 325 HB)

X33CrS16	100 %	
Corroplast		140 %
X33CrS16	100 %	
Corroplast		135 %
X33CrS16	100 %	
Corroplast		135 %
X33CrS16	100%	
Corroplast		150 %
X33CrS16	100 %	
Corroplast		140 %
	X33CrS16 Corroplast X33CrS16 Corroplast X33CrS16 Corroplast X33CrS16 Corroplast	X33CrS16

Hardness comparison table

Tensile strength	Brinell hardness		Vickers hardness	Rockwell hardness		
	Ball indentation					
R _m MPa	mm d	НВ	HV	HRB	HRC	HR 30 N
255	6.63	76.0	80	_	_	_
270	6.45	80.7	85	41.0	_	_
285	6.30	85.5	90	48.0	_	_
305	6.16	90.2	95	52.0	_	_
320	6.01	95.0	100	56.2	_	_
335	5.90	99.8	105	_	_	_
350	5.75	105	110	62.3	_	_
370	5.65	109	115	_	_	_
385	5.54	114	120	66.7	_	_
400	5.43	119	125	_	_	_
415	5.33	124	130	71.2	_	_
430	5.26	128	135	_	_	_
450	5.16	133	140	75.0	_	_
465	5.08	138	145	_	_	_
480	4.99	143	150	78.7	_	_
495	4.93	147	155	_	_	_
510	4.85	152	160	81.7	_	_
530	4.79	156	165	_	_	_
545	4.71	162	170	85.0	_	_
560	4.66	166	175	_	_	_
575	4.59	171	180	87.1	_	_
595	4.53	176	185	_	_	_
610	4.47	181	190	89.5	_	_
625	4.43	185	195	_	_	_
640	4.37	190	200	91.5	_	_
660	4.32	195	205	92.5	_	_
675	4.27	199	210	93.5	_	_
690	4.22	204	215	94.0	_	_
705	4.18	209	220	95.0	_	_
720	4.13	214	225	96.0	_	_
740	4.08	219	230	96.7	_	_
755	4.05	223	235	-	_	_
770	4.01	228	240	98.1	20.3	41.7

Brinell hardness		Vickers hardness	Rockwell hardness			
Ball indentation						
mm d	НВ	HV	HRB	HRC	HR 30 N	
3.97	233	245	_	21.3	42.5	
3.92	238	250	99.5	22.2	43.4	
3.89	242	255	_	23.1	44.2	
3.86	247	260	(101)	24.0	45.0	
3.82	252	265	_	24.8	45.7	
3.78	257	270	(102)	25.6	46.4	
3.75	261	275	_	26.4	47.2	
3.72	266	280	(104)	27.1	47.8	
3.69	271	285	_	27.8	48.4	
3.66	276	290	(105)	28.5	49.0	
3.63	280	295	_	29.2	49.7	
3.60	285	300	_	29.8	50.2	
3.54	295	310	_	31.0	51.3	
3.49	304	320	_	32.2	52.3	
3.43	314	330	_	33.3	53.6	
3.39	323	340	_	34.4	54.4	
3.34	333	350	_	35.5	55.4	
3.29	342	360	_	36.6	56.4	
3.25	352	370	_	37.7	57.4	
3.21	361	380	_	38.8	58.4	
3.17	371	390	_	39.8	59.3	
3.13	380	400	_	40.8	60.2	
3.09	390	410	_	41.8	61.1	
3.06	399	420	_	42.7	61.9	
3.02	409	430	_	43.6	62.7	
2.99	418	440	_	44.5	63.5	
2.95	428	450	_	45.3	64.3	
2.92	437	460	_	46.1	64.9	
2.89	447	470	_	46.9	65.7	
2.86	(456)	480	_	47.7	66.4	
2.83	(466)	490	_	48.4	67.1	
2.81	(475)	500	_	49.1	67.7	
			_		68.3	
	Ball indentation mm d 3.97 3.92 3.89 3.86 3.82 3.78 3.75 3.72 3.69 3.66 3.63 3.60 3.54 3.49 3.43 3.39 3.34 3.29 3.25 3.21 3.17 3.13 3.09 3.06 3.02 2.99 2.95 2.92 2.89 2.86 2.83	Ball indentation HB 3.97 233 3.92 238 3.89 242 3.86 247 3.82 252 3.78 257 3.75 261 3.69 271 3.66 276 3.63 280 3.54 295 3.49 304 3.43 314 3.39 323 3.34 333 3.29 342 3.21 361 3.17 371 3.13 380 3.09 390 3.02 409 2.99 418 2.95 428 2.92 437 2.89 447 2.86 (456) 2.83 (466) 2.81 (475)	Ball indentation HB HV 3.97 233 245 3.92 238 250 3.89 242 255 3.86 247 260 3.82 252 265 3.78 257 270 3.75 261 275 3.72 266 280 3.69 271 285 3.60 285 300 3.54 295 310 3.49 304 320 3.43 314 330 3.39 323 340 3.29 342 360 3.29 342 360 3.21 361 380 3.17 371 390 3.13 380 400 3.09 390 410 3.02 409 430 2.99 418 440 2.99 418 440 2.92 <td< td=""><td>Ball Indentation HB HV HRB 3.97 233 245 - 3.92 238 250 99.5 3.89 242 255 - 3.86 247 260 (101) 3.82 252 265 - 3.78 257 270 (102) 3.72 266 280 (104) 3.69 271 285 - 3.66 276 290 (105) 3.63 280 295 - 3.60 285 300 - 3.49 304 320 - 3.49 304 320 - 3.49 304 320 - 3.43 314 330 - 3.29 342 360 - 3.29 342 360 - 3.21 361 380 - 3.17 371 390</td><td>Ball Indentation mm d HB HV HRB HRC 3.97 233 245 - 21.3 3.92 236 250 99.5 22.2 3.89 242 255 - 23.1 3.86 247 260 (101) 24.0 3.82 252 265 - 24.8 3.78 257 270 (102) 25.6 3.75 261 275 - 26.4 3.72 266 280 (104) 27.1 3.69 271 285 - 27.8 3.66 276 290 (105) 28.5 3.63 280 295 - 29.2 3.60 285 300 - 29.8 3.54 295 310 - 31.0 3.49 304 320 - 32.2 3.43 314 330 - 33.3 3.29</td></td<>	Ball Indentation HB HV HRB 3.97 233 245 - 3.92 238 250 99.5 3.89 242 255 - 3.86 247 260 (101) 3.82 252 265 - 3.78 257 270 (102) 3.72 266 280 (104) 3.69 271 285 - 3.66 276 290 (105) 3.63 280 295 - 3.60 285 300 - 3.49 304 320 - 3.49 304 320 - 3.49 304 320 - 3.43 314 330 - 3.29 342 360 - 3.29 342 360 - 3.21 361 380 - 3.17 371 390	Ball Indentation mm d HB HV HRB HRC 3.97 233 245 - 21.3 3.92 236 250 99.5 22.2 3.89 242 255 - 23.1 3.86 247 260 (101) 24.0 3.82 252 265 - 24.8 3.78 257 270 (102) 25.6 3.75 261 275 - 26.4 3.72 266 280 (104) 27.1 3.69 271 285 - 27.8 3.66 276 290 (105) 28.5 3.63 280 295 - 29.2 3.60 285 300 - 29.8 3.54 295 310 - 31.0 3.49 304 320 - 32.2 3.43 314 330 - 33.3 3.29	

Hardness comparison table

Tensile strength	ensile strength Brinell hardness		Vickers hardness	Rockwell hardness		
	Ball indentation					
R _m MPa	mm d	НВ	HV	HRB	HRC	HR 30 N
1700	2.75	(494)	520	_	50.5	69.0
1740	2.73	(504)	530	_	51.1	69.5
1775	2.70	(513)	540	_	51.7	70.0
1810	2.68	(523)	550	_	52.3	70.5
1845	2.66	(532)	560	_	53.0	71.2
1880	2.63	(542)	570	_	53.6	71.7
1920	2.60	(551)	580	_	54.1	72.1
1955	2.59	(561)	590	_	54.7	72.7
1995	2.57	(570)	600	_	55.2	73.2
2030	2.54	(580)	610	_	55.7	73.7
2070	2.52	(589)	620	_	56.3	74.2
2105	2.51	(599)	630	_	56.8	74.6
2145	2.49	(608)	640	_	57.3	75.1
2180	2.47	(618)	650	_	57.8	75.5
_	_	_	660	_	58.3	75.9
_	_	_	670	_	58.8	76.4
_	_	_	680	_	59.2	76.8
_	_	_	690	_	59.7	77.2
_	_	_	700	_	60.1	77.6
-	-	_	720	_	61.0	78.4
_	_	_	740	_	61.8	79.1
_	_	_	760	_	62.5	79.7
_	_	_	780	_	63.3	80.4
_	_	_	800	_	64.0	81.1
_	-	_	820	_	64.7	81.7
_	_	-	840	_	65.3	82.2
_	-	-	860	-	65.9	82.7
_	-	_	880	_	66.4	83.1
_	-	-	900	_	67.0	83.6
_	-	_	920	_	67.5	84.0
_	_	_	940	_	68.0	84.4
	1					

Process and process parameters					
Brinell hardness (calculated from: (HB = 0.95 · HV)	Diameter of ball indentation in mm	d			
(0.102 F/D ² = 30) D = 10	Hardness value = $\frac{0.102 \cdot 2 \text{ F}}{\varpi \text{ D}(D - \sqrt{D^2 - d^2})}$	НВ			
Vickers hardness	Diamond pyramid Test forces ≥ 50 N	HV			
Rockwell hardness	Ball 1.588 mm (1/16") Total test force = 98 N	HRB			
	Diamond cone Total test force = 1471 N	HRC			
	Diamond cone Total test force = 294 N	HR 30 N			

Swiss Steel Group www.swisssteel-group.com

Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG

Auestr. 4 58452 Witten GERMANY

Phone: +49 (0)2302 29 - 0 Fax: +49 (0)2302 29 - 4000

info@dew-stahl.com www.dew-stahl.com